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1. Overview

Earths early history is marked by a giant impact with a Mars-sized object which led to the
formation of the moon. This impact event was the source of a substantial amount of melting
of the Earths interior. Subsequent cooling of the Earth involved extensive crystallization
in this “magma ocean” over a relatively short period of time. While chemical evidence
from ancient sources provides some clues on the rate of cooling, computational models of
such phenomena are sparse.
The presented work uses the dual reciprocity boundary element method (DRBEM)

to model heat flow in a multiphase fluid. DRBEM extends on the boundary element
method (BEM) allowing one to solve the heat equation only on the boundary of the
problem, avoiding expensive rediscretization found in traditional methods. DRBEM works
by approximating the residual term of the PDE that would be troublesome to use in BEM
by a linear combination of radial basis functions chosen a priori. Using the approximation
of the residual portion allows for the boundary method to be applied to more complicated
PDEs such as the heat equation. The research presented extends on DRBEM to solve the
heat equation in an infinite magma ocean with multiple advecting crystals.

2. Governing equations and boundary integrals
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Figure 1: The mesh for the
three crystal problem. The
boundary elements are approx-
imated using cubic spline inter-
polation. Even though there
are domain nodes, they are not
structured and are not encum-
bering during rediscretization.

Modeling the crystal settling behavior requires solving a cou-
pled system of partial differential equations. To facilitate us-
ing DRBEM, a system of equations is written for the P + 1
domains. The bounded domains {Ωp}Pp=1 represent the P
crystals in the suspension. The unbounded domain repre-
senting the infinite magma ocean is denoted Ω0.

−∇p + µp∇2u + ρpb = 0 x ∈ Ωp p = {0, 1, . . . , P}(1)
∂θ

∂t
+ u · ∇θ − κp∇2θ = b x ∈ Ωp p = {0, 1, . . . , P}(2)

where µp and ρp are the viscosity and density of the fluid
in domain Ωp, and κp is the thermal diffusivity of the p-th
domain.
Applying standard BEM and DRBEM procedures, (1) and

(2) can be rewritten as a system of boundary integral equa-
tions [1][2]:

ui = u∞ +
2

1 + λi



−
1

4πµi

P
∑

p=1

∫

Γp
∆f p · Ji dΓp +

P
∑

p=1

1

2π
(1− λp)

∫

Γp
n̂ ·Ki · u dΓp



 (3)

θi =
P
∑

p=0

1

κp

Jp
∑

j=1

βp
j

(

cp,ji θ̂p,ji +
∫

Γp

[(

∇θ̂p,j · n̂±
)

θ∗i −
(

∇θ∗i · n̂±
)

θ̂p,j
]

dΓp
)

(4)

where J andK are Greens functions, ∆f the jump in surface
tension, and λp = µp/µ0 is the viscosity ratio for the Stokes
equation. For the heat equation θ∗ is the Greens function for
the Laplace operator and θ̂p,j is the the solution to

∇2θ̂p,j = f p,j, (5)

with βp
j chosen such that

∑
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p,j ≈ ∂θ
∂t + ~u · ∇θ − b in

Ωp, where f
p,j are appropriate radial basis functions (RBFs).

Numerical methods for solving (3) have been presented [3][4]
and (4) [5][6] on bounded domains. The current work focuses
on numerical solutions to (4) for the multicrystal system.
There are several choices for RBFs to use to approximate

the residual term in DRBEM. Historically the cone has been
used due to its simplicity. However, research has shown that
thin-plate splines (TPS) perform better numerically and have
preferable mathematical properties [7].
The asymptotic behavior of the cone and TPS RBFs pre-

clude them from being used in unbounded domains. Loeffler
and Mansur [8] developed a RBF that satisfies the necessary
requirements. The LM RBFs require a parameter c to be
chosen a priori.

Figure 2: (Top) Cone RBF (1 + r). (Middle) TPS RBF (r2 ln r). (Bottom) LM RBF (2c− r)/(r + c)4

with, from top to bottom, c = 1, 1.5 ,2. With smaller values of c the LM RBF only approximate local
behavior. However, as c becomes large, the linear system needed to find the RBF coefficients becomes ill
conditioned.

3. Numerical Results

A closed form asymptotic solution exists for limited cases of
thermal flow around a single particle. The analytical solu-
tions allows for the heat and fluid velocities to be calculated
without the need for approximation or large scale computa-
tion. However, the solution only hold in limited cases. The
solution is only valid for one near spherical crystal in a fluid
with a Péclet number close to 1. While solutions of this type
can offer intuition into the behavior of larger problems, they
cannot rigorously provide results.

The numerical method being developed based on the modi-
fied DRBEMmethod is able to approximate the heat and fluid
velocity in a problem with multiple settling crystals. It also is
able to provide a higher order approximation of the solution
in the case the crystals generic in shape and the Péclet is ar-
bitrary. In return DRBEM requires assembling and solving a
large linear system.

Figure 3: Analytics result for one crystal (top). Numerical result for
one crystals at t = 50 (middle), and one crystal at t = 250 (bottom),
with crystal thermal diffusivity set at 0.5 and the thermal diffusivity of
the magma ocean set at 1.0. The numerical results show the diffusion of
the heat with initial condition θ = 1 in the suspension and θ = 0 in the
particles. The crystal eventually melts as it is in an infinite magma ocean.
However, it is able to temporarily cool the surrounding region.

4. Discussion

Figure 4: The initial conditions of the
for the nine particle problem. The im-
plementation of the modified DRBEM
will be robust enough to handle an arbi-
trary number of particles with arbitrary
shapes and physical properties.

Already multiphase fluid flow can be accurately and
efficiently computed using traditional BEM. Using a
boundary method allows for the simulation of many
viscous crystals advecting through an infinite suspen-
sion fluid. By using DRBEM, this ability is extended
to the heat equation. The present research will al-
low for the simulation of a hydrothermal system with
hundreds of settling crystals advecting and thermally
interacting with the surrounding magma ocean.

DRBEM allows for a meshless approach to solving a
system of partial differential equations. The meshless
feature of the method enables the interface between the
crystals and the magma ocean to be more accurately
approximated. In addition, any rediscretization

required only occurs along the boundary of the crystals.
In the near future, the implemention of the modified DRBEM is method will have the

ability to model the settling of hundreds of cool crystals into a hot magma ocean. The
simulations will provide an efficient way to measure cooling in an environment not unlike
the magma ocean found in the early Earth after the large impact event. Data collected
may be able to bring tighter bounds on rates of cooling of the planet.
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