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Overview

Introduction to Stokes Flow and Boundary Methods.

Computational Difficulties and Acceleration Techniques.

Analysis and Implementation Details.

Overview of Application Areas.
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Geophysical Applications
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Geophysical Applications
Micro-scale simulation:

Heterogenous flows. 

Exploring the evolution at
the Core-Mantle Boundary.

Anisotropic grain-grain 
stresses. 

Large viscous flows 
(volcanic flows).

Binary fluid separation.

Crystal Grain Structure [Edward Pleshakov, 
Wikimedia 2008]

( )M. Manga et al.rJournal of Volcanology and Geothermal Research 87 1998 15–28 17

pensions of bubbles. We begin by discussing two
parameters that characterize the behaviour of bubbles
in viscous flows: the capillary number and the vol-
ume fraction of bubbles. Because bubbles will de-
form in response to viscous stresses, the rheology of
bubbly liquids depends on the shear rate G. The
importance of shear stresses, which act to deform
bubbles, relative to surface tension stresses, which

tend to keep bubbles spherical, is characterized by
the capillary number:

mGa
Cas capillary number 1Ž . Ž .

g

where g is the surface tension, a is the undeformed
bubble radius and m is the suspending fluid viscos-
ity. We also might expect the rheology of bubbly

Ž . Ž . Ž .Fig. 1. a Distribution of bubble deformation D see inset for definition and b thin section image from 8 ka obsidian from Mayor Island,
New Zealand. The thin was cut parallel to the direction of bubble elongation; the inset shows a thin image of the same sample perpendicular
to the larger image.

Micro bubbles Map of ULVZs [Manga et al. 1998]
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The Physical Problem

Each domain may have 
different physical properties.

Explicitly track boundary 
nodes during creeping 
flows.

Possibility for unbounded 
domains.

�rP + µr2u+ ⇢b = 0
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Governing Equation
The Stokes Boundary Integral Equation (BIE) for 
multiple domains [Pozrikidis 2001].
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Direct Computation

Collocation Method.

Generally dense and 
asymmetric.

Kernel functions have infinite
support.

Limits size of problem.
(32,768 nodes is 1GB matrix).
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Fast Multipole Method

Direct Method
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Fast Multipole Method
Approximate the integral over a boundary element.

Move series expansions up and down a tree.

Translate.

Combine.

Direct Method
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Fast Multipole Method
Approximate the integral over a boundary element.

Move series expansions up and down a tree.

Translate.

Combine.

All distant interactions
represented by a series.

Only nearby interactions
are computed directly.

Tree structure results in                   multiplication!O(N logN)

Direct Method
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Fast Multipole Method
Approximate the integral over a boundary element.

Move series expansions up and down a tree.

Translate.

Combine.

All distant interactions
represented by a series.

Only nearby interactions
are computed directly.

Tree structure results in                   multiplication!O(N logN)

Fast Method
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Far Field Expansion
Example for Potential:

Z

�e

G(z0, z)t(z) d�e
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Far Field Expansion
Example for Potential:

Z
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G(z0, z)t(z) d�e

G(z0, z) = log(z0 � z) = log(z0 � zc) + log

✓
1� z � zc

z0 � zc

◆Rewrite around a new point [Liu 2006]:
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Geophysical Applications
Micro-scale simulation:

Heterogenous flows. 

Exploring the evolution at
the Core-Mantle Boundary.

Anisotropic grain-grain 
stresses. 

Large viscous flows 
(volcanic flows).
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pensions of bubbles. We begin by discussing two
parameters that characterize the behaviour of bubbles
in viscous flows: the capillary number and the vol-
ume fraction of bubbles. Because bubbles will de-
form in response to viscous stresses, the rheology of
bubbly liquids depends on the shear rate G. The
importance of shear stresses, which act to deform
bubbles, relative to surface tension stresses, which

tend to keep bubbles spherical, is characterized by
the capillary number:

mGa
Cas capillary number 1Ž . Ž .

g

where g is the surface tension, a is the undeformed
bubble radius and m is the suspending fluid viscos-
ity. We also might expect the rheology of bubbly

Ž . Ž . Ž .Fig. 1. a Distribution of bubble deformation D see inset for definition and b thin section image from 8 ka obsidian from Mayor Island,
New Zealand. The thin was cut parallel to the direction of bubble elongation; the inset shows a thin image of the same sample perpendicular
to the larger image.

Micro bubbles Map of ULVZs [Manga et al. 1998]
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Grain Simulations

Model a matrix with hundreds of deformable grains.

Grain-grain interaction/contact.

Deformation and rotation in flow.

Derive material properties of flow matrix.
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Scaling
On Blacklight:

Allow for more parameter
sweeps of current models.

Hundreds of particles.
Blacklight [Pittsburgh Supercomputing Center]
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Scaling
On Blacklight:

Allow for more parameter
sweeps of current models.

Hundreds of particles.

On Stampeed:

6th Fastest Supercomputer

Scale to thousands of
particles and beyond...

Blacklight [Pittsburgh Supercomputing Center]

Stampede [Texas Advanced Computing Center]
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Geophysical Results
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The Big Ideas
Fast Multipole Boundary Element Method provides fast 
method for solving PDEs.

Same speed as traditional FDM, FVM, and FEM.

Explicitly tracks interfaces.
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The Big Ideas
Fast Multipole Boundary Element Method provides fast 
method for solving PDEs.

Same speed as traditional FDM, FVM, and FEM.

Explicitly tracks interfaces.

Have a multi-domain viscous fluid you need modeled?

Material Science, Chemical Engineering, Biology...
... and of course Geophysics!
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