Many-Particle Simulations using the Fast Boundary Method

NSF EAR 0911094:and EAR:1215800

Tyler Drombosky dromboskemathoumd, edu
University of Maryland:College:Park
Applied Mathematics and Scientific Conputation
Saswata Hier Majuninder saswata@umd edu
University of Maryland College Park
Department of Geoology
Center for Computational Sciences and Mathematical Modeling

Overview

- Introduction to Stokes low and Boundary Methods.
- Computational Difficuilies and Acceleration Techniques.
- Analysis and molementation Qetails.
- Overview of Application Areas.

Geophysical Applications

Geophysical Applications

- Micro-scale simulation:
- Heterogenous flows.
- Exploring the evolution at the Core Mantle Boundary.

- Anisotropic graingrain stresses.
- Large viscouisflows (volcanic flows)
- Binary fluid separation.

Crystal Grain'Structure [Edward Pleshakov, Wikimedia 2008]

Micro bubbles Map of ULVZs [Manga et al. 1998]

The Physical Problem

$$
-\nabla P+\mu \nabla^{2} \boldsymbol{u}+\rho \boldsymbol{b}=0
$$

- Each domain may have different physical properties.
- Explicity track boundary nodes duing creeping flows.
- Possibility for unbounded domains:

Governing Equation

* The Stokes Boundary lntegral Equation (B) for multiple domains [Pozrikidis 2001].
- The dimensionless parameters:

$$
\begin{aligned}
& C_{c}-\frac{\mu_{n} \psi_{c}}{2} \\
& \lambda_{p}=\frac{\mu_{p}}{\mu_{m}}
\end{aligned}
$$

Governing Equation

- The Stokes Boundary Integral Equation (B) fer for multiple domains [Pozrikidis 2001].
- The dimensionless parameters.

$$
\begin{aligned}
& C_{c}-\frac{\mu_{n} \psi_{c}}{2} \\
& \lambda_{p}=\frac{\mu_{p}}{\mu_{m}}
\end{aligned}
$$

Governing Equation

* The Stokes Boundary Integral Equation (B) fil for multiple domains [Pozricidis 2001].

$$
\begin{aligned}
& \frac{1+\lambda_{q} \chi_{j}(x)}{} u_{i n} u_{j}^{\infty}\left(x_{0}\right) \sum_{p=1}^{P} \frac{1}{4 \pi C a} \int_{\Gamma_{p}} \Delta f_{i}^{(p)}(x) U_{i j}\left(x, x_{0}\right) \mathrm{d} \Gamma_{m}(x)
\end{aligned}
$$

- The dimensionless parameters:

$$
\begin{aligned}
& C_{a}=\frac{\mu_{m} \psi_{c}}{2} \\
& \lambda_{p}=\frac{\mu_{p}}{\mu_{m}}
\end{aligned}
$$

Governing Equation

* The Stokes Boundary Integral Equation (B) fil for multiple domains [Pozriciois 2001].

$$
\begin{aligned}
& \frac{1+\lambda_{q} \chi_{j}(x)}{} u_{i n} u_{j}^{\infty}\left(x_{0}\right) \sum_{p=1}^{P} \frac{1}{4 \pi C a} \int_{\Gamma_{p}} \Delta f_{i}^{(p)}(x) U_{i j}\left(x, x_{0}\right) \mathrm{d} \Gamma_{m}(x)
\end{aligned}
$$

- The dimensionless parameters.

$$
\mathcal{C} a=\frac{\mu_{m} u_{c}}{\gamma_{c}} \underbrace{2}, \lambda_{p}=\frac{\mu_{p}}{\mu_{m}}
$$

Governing Equation

* The Stokes Boundary Integral Equation (BIE) for multiple domains [Pozrikidis 2001].

$$
\begin{aligned}
& \frac{1+\lambda_{q} \chi_{j}(x)}{} u_{i n} u_{j}^{\infty}\left(x_{0}\right) \sum_{p=1}^{P} \frac{1}{4 \pi C a} \int_{\Gamma_{p}} \Delta f_{i}^{(p)}(x) U_{i j}\left(x, x_{0}\right) \mathrm{d} \Gamma_{m}(x) \\
& \sum_{p=1}^{P} \frac{1-\lambda_{p}}{4 \pi} \int_{\Gamma_{p}}^{\mathcal{P V}} u_{i}(x) T_{i j k}\left(x, x_{0}\right) \hat{n}_{k}(x) \mathrm{d} \Gamma_{p}(x)
\end{aligned}
$$

- The dimensionless parameters:

$$
\mathcal{C} a=\frac{\mu_{m} u_{c}}{\gamma_{c}} \sigma^{\lambda_{p}}=\frac{\mu_{p}}{\mu_{m}}
$$

Governing Equation

- The Stokes Boundary Integral Equation (B) fer for multiple domains [Pozrikidis 2001].

$$
\begin{aligned}
& \frac{1+\lambda_{q} \chi_{j}(x)}{} u_{n} u_{j}^{\infty}\left(x_{0}\right) \sum_{p=1}^{P} \frac{1}{4 \pi \mathcal{C} a} \int_{\Gamma_{p}} \Delta f_{i}^{(p)}(x) U_{i j}\left(x, x_{0}\right) \mathrm{d} \Gamma_{m}(x) \\
& \sum_{p=1}^{P} \frac{1-\lambda_{p}}{4 \pi} \int_{\Gamma_{p}}^{\mathcal{P V}} u_{i}(x) T_{i j k}\left(x, x_{0}\right) \hat{n}_{k}(x) \mathrm{d} \Gamma_{p}(x)
\end{aligned}
$$

- The dimensionless parameters.

$$
\mathcal{C} a=\frac{\mu_{m} u_{c}}{\gamma_{c}} \quad . \quad . \quad \lambda_{p}=\frac{\mu_{p}}{\mu_{m}}
$$

Direct Computation

- Collocation Method.
- Generally dense and asymmetric.
- Kernel functions have infinite support:
- Limits size of problem. (32,768 nodes is 1 GB matrix):

Fast Multipole Method

Direct Method

Fast Multipole Method

- Approximate the integral over a boundary element.
- Move series expansions up and down a tree.
- Translate.
- Combine

Direct Method

Fast Multipole Method

- Approximate the integral over a boundary element.
- Move series expansions up and down a tree.
- Translate
- Combine
- All distant interactions represented by a series.

Direct Method

Fast Multipole Method

- Approximate the integral over a boundary element.
- Move series expansions up and down a tree.
- Translate
- Combine
- All distant interactions represented by a series.

- Only nearby interactions Direct Method are computed directly.

Fast Multipole Method

- Approximate the integral over a boundary element.
- Move series expansions up and down a tree.
- Translate
- Combine
- All distant interactions represented by a series.

- Only nearby interactions Direct Method are computed directly:
- Tree structure results in $\Theta(N \log N)$ multiplication!

Fast Multipole Method

- Approximate the integral over a boundary element.
- Move series expansions up and down a tree.
- Translate
- Combine
- All distant interactions represented by a series.
- Only nearby interactions

Fast Method are computed directly.

- Tree structure results in $\mathcal{O}(N \log N)$ multiplication!

Far Field Expansion

Far Field Expansion

* Rewrite around a new point Liu 2006].

Far Field Expansion

* Rewrite around a new point Lili 20061

- Taylor Expand (requires $\left|z-z_{c}\right|<\left|z_{0}-z_{c}\right|$)

Far Field Expansion

* Rewrite around a new point [ific 20061

- Taylor Expand (requires $\left.\left|z-z_{c}\right|<\left|z_{0}-z_{c}\right|\right)$

$$
\begin{aligned}
& J_{\Gamma_{e}} G\left(z_{0}, z\right) t(z) d F_{d}=\Theta_{k}\left(z_{0}-z_{c}\right) \int_{\Gamma_{e}} I_{k}\left(z-z_{c}\right) t(z) d \Gamma_{e}
\end{aligned}
$$

Far Field Expansion

* Rewrite around a new point [i fir 20061

- Taylor Expand (requires $\left.\left|z-z_{c}\right|<\left|z_{0}-z_{c}\right|\right)$

$$
\begin{aligned}
& \int_{\Gamma_{0}} G\left(z_{0}, z\right) t(\mathrm{z}) d \Gamma_{\mathrm{K}}=\sum_{k=0}^{\infty} Q_{k}\left(z_{0},-z_{c}\right) \int_{\Gamma_{e}} I_{k}\left(z-z_{c}\right) t(z) d \Gamma_{e}
\end{aligned}
$$

							0	0	0				
0					0	\cdots				0	0		
													0
													\bigcirc
		0									0	0	
											-		
									0				
	$0{ }^{0}$								6				
	0												
											0		
	0											\%	
	0				0			0					10
0				0									9
Ko				0					0				0
													0
	0	0	0								00	0	0

$$
\begin{aligned}
& \text { Near Field Expansion }
\end{aligned}
$$

No pr

$$
\begin{aligned}
& \text { Near Field Expansion }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Near Field Expansion }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Near Field Expansion } \\
& \int_{\Gamma_{0}} G\left(z_{0}, z\right) t(z) d \Gamma_{\Omega}-\sum_{k=0}^{\infty} O_{r}\left(\Omega:=\int_{\Gamma_{c}} I_{k}\left(z-z_{e}\right) t(z) d \Gamma_{c}\right.
\end{aligned}
$$

r Requires $\left|z_{0}-z_{L}\right|<\left|z_{c}-z_{L}\right|$

Geophysical Applications

Geophysical Applications

- Micro-scale simulation:
- Heterogenous flows.
- Exploring the evolution at the Core Mantle Boundary.

- Anisotropic graingrain stresses.
- Large viscouisflows (volcanic flows)
- Binary fluid separation.

Crystal Grain'Structure [Edward Pleshakov, Wikimedia 2008]

Micro bubbles Map of ULVZs [Manga et al. 1998]

Grain Simulations

- Model a matrix with huindreds of deformable grains.
- Graingrain interaction/contact.
- Deformation and rotation in flow.
- Derive material properties of flow matrix.

Scaling

Scaling

- On Blacklight:
- Allow for more parameter sweeps of current models.
* Hundreds of particles.

Bläckight [Pittsbürgh Supercomputing Center]

Scaling

- On Blacklight:
- Allow for more parameter sweeps of current models.
- Hundreds of particles.

Blacklight [Pittsbürgh Supercomputing Center]

- On Stampeed:
- 6 th Fastest Suipercomputer
- Scale to thousands of particles and beyond..

Geophysical Results

Geophysical Results

The Big ldeas

The Big ldeas

* Fast Multipole Boundary Element Method provides fast method for solving PDES.
- Same speed as traditional EDM, MM and FEM
- Explicitly tracks interfaces.

The Big Ideas

* Fast Multipole Boundary Element Method provides fast method for solving PDES
- Same speed as traditional FDM MM and FEM
- Explicitly tracks interfaces.
- Have a mult oomain viscous fluid you need modeled?
- Material Science, Chemical Engineering, Biology...
and of course Geophysics!

Many-Particle Simulations using the Fast Boundary Method

NSF EAR 0911094:and EAR:1215800

Tyler Drombosky dromboskemathoumd, edu
University of Maryland:College:Park
Applied Mathematics and Scientific Conputation
Saswata Hier Majuninder saswata@umd edu
University of Maryland College Park
Department of Geoology
Center for Computational Sciences and Mathematical Modeling

References

- X. Gao, "Numerical evaluation of two-dimensional singular boundany integrals Theory and Fortran code", Journal of Computational and Applied Mathematics, Volume: 118 , Pages 44-64, 2006
* E.J. Garnero and A.K. McNamara, "Structure and Dynamics of Earth's Lower Mantle", Science, Volume 320, Issue 5876: Pages 626:628;2008
* S. Hier-Majumder and RevenaughitReationship between the viscosity and topography of the ultralow-velocity zone near the core mantle boundary": Earth and Planetary Science Letters, Volume 299; Pages 382:386; 2010

2. D. Koch and D. Lioch: Numerical and theoretical solutions for a drop spreading below a free fluid surface, Journal of filuid mechanics; Volume:287, Issue 1, Pages 251-278, 1994

- L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes; Cambridge Series in Chemical Engineering;2007
- Tis. Massak et al. Core mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics"; Earth and Planetary Science Letters, Volue 289, Pagrs 232-241, 2010
- Y.J. Liu and N. Nishimura, "The fast muilipole boundary element method for potential problems: a tutorial", Engineering Analysis with Boundary Elements, Volume 30, Issue 2, Pages 371-381, 2006

References

* Y.J. Liu, "A new fast multipole boundary element method for solving:2:D:Stokes flow problems based on a dual BIE formulation", Engineering Analysis with Boundary Elements; Volume 32, Issue 2, Pages 139-151,2008
* M. Manga and H. Atone; Buoyancy-Driven Interactions Between2 Deformable Viscous Drops", Journal of fluid mechanics, Volume 256; Pages 647:683; 1993
* A.K. McNamara, E. Garnero, and Sost Tracking deep mantle reservoirs with ultra-low velocity zones" : Earth and Planetary Science Letters; Volume 299; Pages 1-9;2010
- C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, Cambridge Texts in Applied Mathematics; 1992
E. C. Pozrikidis, Interfacial Dynamics for Stokes Flow journal of Computational Physics, Volume 169, Issue 2, Pages:250-301;2001
- S. Rost et al. "Seismological constraints on possible plume root at the core-mantle boundary", Nature, Volume 435, Issue 7042, Pages 666-669, 2005
*.M.S. Warren and J. Salmon, "A Parallel Hashed Oct-Tree N-Body Algorithm", Proceedings of the 1993 ACM/IEEE conference on Supercomputing, AMC, Pages 12-21, 1993

